Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
In this study, two electrochemical techniques were used to characterize corrosion behavior of 17-4 PH stainless steel (UNS S17400), Inconel 625 (UNS N06625) and Ti-6Al-4V (UNS R56400) produced by power bed fusion process at different spatial scale.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This technical report presents the current state of knowledge and gap analyses on corrosion testing of metallic materials produced using additive manufacturing (AM) technologies in environments relevant to several industrial applications. The discussed materials were produced primarily via laser powder bed fusion (LPBF), directed energy deposition (DED), and specifically the wire arc additive manufacturing (WAAM) form of DED. Many variables may not be sufficiently detailed in the rapidly evolving state of the art at the time of publication for the assessment of the performance of AM products; some variables such as microstructure, post-build processing, surface condition, residual stress, physical defects, and selection of representative test specimens (size and/or geometry) for a finished product are addressed. This report contains approaches for corrosion and environmental cracking assessment of AM materials, including test details that are relevant to the AM processes for some specific cases. The technical report provides the foundation for the preparation of test standard(s) that apply to AM products.
UNS N07718 (Alloy 718) is a precipitation-hardened Nickel alloy widely used for various components in oil and gas production service where a combination of high strength, good cracking and corrosion resistance is needed. API 6ACRA provides heat treatment windows and acceptance criteria for wrought Alloy 718 in these oil and gas production environments, in which the heat treatment is intended to obtain high strength desired for applications in combination with good environmental performance.
Additive Manufacturing (AM) is increasingly becoming a source of design, fabrication of complex components where machining from wrought material would be very cumbersome or introduced complicated welding processes.