Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
An analytical method using fluorescence spectroscopy has been developed to measure inhibitor concentration. It enables dye transfer methods and promises a greater degree of accuracy. The procedure can be performed in the laboratory or at the well site, and individual analysis can be done quickly.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Carbon steel is the main construction material in HYDROFLUORIC ACID (HF) alkylation units. Carbon Steel has good corrosion resistance to anhydrous HF (AHF) below 160 degrees fahrenheit (71 C). The corrosion resistance is due to the formation of an inorganic iron fluoride scale on the carbon steel surface that protects the steel from futher corrosion. The presence of an adherent and continuous scale is essential in keeping the corrosion rate at a minimum.
Residual elements (RE) in carbon steel, not specifically included in the specified steel, appear to influence the corrosion rate under certain conditions, especially in services involving hydrofluoric acid (HF). The relative proportions of RE, specifically %C, %Ni, %Cu, and %Cr in carbon steel base and weld metals used in refineries, especially in alkylation processes with HF as the catalyst, significantly impact corrosion behavior. Studies described in the literature show corrosion damage with high RE (Cu + Ni + Cr >0.20) components as compared to low RE (Cu + Ni + Cr <0.20) components.
In this study, electrochemical corrosion testing was performed on a 3-inch pipe elbow section with high REs that had developed a through-wall leak in service. Test results were compared to those obtained on a similar pipe elbow section with lower REs. The samples were exposed to 50% HF at room temperature and at 65°C. Linear polarization resistance (LPR) corrosion rates were measured at both temperatures. Potentiodynamic (PD) polarization scans were performed on samples of low and high RE steel exposed to 50% HF at room temperature.
Test results indicated that LPR corrosion rates were higher for the high RE carbon steel samples than for low RE carbon steel samples at both temperatures. PD scans showed that the critical current densities were higher for high RE steel than for low RE steel.
The nuts of galvanized fasteners used on bridges are coated with a wax-based lubricant that contains a dye. Once installed, the fasteners are cleaned to remove the wax prior to painting. Cleaning is typically accomplished using a combination of solvents and hand tools, but questions are often raised as to how much residual dye on the surface is acceptable for painting.