Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Thermal and/or hydrolytic stability behavior of solutions of carboxylic acids. This work thermally stressed aqueous solutions of carboxylic acids and analyzed the resulting solution and headspace. Expected corrosion impact on distillation overheads and brine rundown systems.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Carbon capture and storage (CCS) or utilisation (CCU) of the captured carbon dioxide (CO2) are tools for reducing global carbon emissions, and to combat climate change both are required. According to the IEA1, in 2021, the global capacity of CCS grew by 48%i, showing that this technology is becoming more popular to meet sustainability targets.
Methodology to simulate actual oil and gas field condition in laboratory tests. A sulfide stress cracking test is carried out on 13% Cr stainless steel with various buffer solutions. Then, pH behavior was estimated. A suitable composition of the solution is proposed by using thermodynamic calculations.