Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The U.S. has more than 2.6 million miles of pipelines that transport natural gas and petroleum products. These pipelines are subjected to various potential threats (e.g., aging, harsh environment, natural hazard) during their service lives. Particularly, corrosion that results in loss of metal on external or internal surfaces of pipelines is one of the leading causes of the pipeline failure.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Refinery operations, characterized by significant process complexities, have traditionally remained as a domain where accurate asset integrity and life prediction have been difficult to achieve. Such difficulty stems from the need to characterize and manage corrosion across different critical process units and parameters; quantifying corrosion has thus become a key factor in ensuring asset integrity, and absence of appropriate corrosion management strategies has often been the cause of some of the most destructive and expensive corrosion failures. Managing corrosion in refineries is a complex task, given the engineering intricacies associated with the processes and operations.
Sulfur and acidic impurities in crude oils pose serious hot oil corrosion problems in crude distillation units (CDU) and associated vacuum distillation units (VDU), especially with the increase in processing of lowquality, opportunity crudes. In the range of 200-400˚C, reactive sulfur compounds cause sulfidation corrosion of ferritic carbon and chrome steels in CDU, VDU, and front ends of downstream units operating at hot oil temperatures. Over the same temperature range, naturally occurring carboxylic acids in crudes can be so aggressive that higher alloy, austenitic stainless steels containing >2.5% Mo are required for processing high acid oils.
Safe and stable operation of the process plant through its life cycle is an ultimate target of any integrity management system. Over the last decades, a number of possible ways and systems for managing plant integrity were described and implemented.1-4 A common path for all those efforts was to control and manage corrosion processes in a more-or-less systematic way by applying certain measures (monitoring techniques, material selection guidelines, operating procedures etc.) and performance indicators (remaining time-to-failure, inhibitor usage etc.). An effective corrosion and integrity management system, in theory, should be capable to “uncover” excessive corrosion incidents before serious damage occurs. Unfortunately, unexpected corrosion-related failures are still occurring in the petroleum industry.5 This situation stems predominantly from relatively poor data organization and management, leaving corrosion and key process information spread and hidden across different refinery functions and systems.
Fouling and corrosion of heat exchangers poses a challenge for oil and gas operators. Here we describe recent efforts to develop and deploy thin, sol-gel-derived coatings to mitigate fouling and promote continuous operation of exchangers without compromising heat transfer efficiency.