Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The research described in this paper was carried out with the objective of establishing any correlation between coating performance and the results of cathodic disbondment testing. Experiments were carried out using 13 coatings. Nine samples of each coating were studied in a total of 117 experiments.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The primary objective of this study was to investigate iron carbonate (FeCO3) formation mechanisms on ferritic-pearlitic carbon steel corroding in a CO2 saturated aqueous solution near iron carbonate saturation, with particular emphasis on the effect of solution pH.
Material selection to get “fit-for-purpose” alloys is an important task that corrosion engineers face in their daily work. Two common ways of attacking such a challenge is by testing different alloys in environments similar to the application in a laboratory environment or installing samples in actual operating equipment. In the latter, testing is usually time consuming and might require plant turnovers to get access to the equipment for sample installation.