Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Bulk items such as cast and forged valves are installed under various temperature conditions. It is exposed to a wide range of temperatures, therefore the coating product applied to bulk items should have appropriate heat resistance performance. However, it is very difficult to select a suitable coating system since the temperature condition is not determined in the valve manufacturing stage. For this reason, unsuitable coating systems are often applied, causing coating defects in the field operation. Therefore, it is necessary to apply a coating system that can cover a wide temperature range to prevent this problem.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A series of experiments was conducted to examine the repeatability of corrosion rates of various coupons, cleaning procedures prior to exposure inside a test chamber, and removal of corrosion byproducts after their exposure.
The success of corrosion protective coating systems relies, to a great extent, on the coatings’ inherent barrier properties. This barrier property signifies the coating’s ability to withstand the permeation of sea water and oxygen, thus minimizing corrosion of the underlying metal. While various additives or pigments can promote the barrier property of coatings, one of the most common pigments is aluminum flakes [1-4].The idea behind their use is simple, and essentially relies on having the aluminum flakes in the coating oriented parallel to the underlying substrate. With them in place, the pathways for sea water and oxygen effectively increase, thus preventing the progression of corrosion. However, while having been employed in numerous coating formulations for many years, the evidence for the success of aluminum flakes as barrier pigments is still lacking.
In new shipbuilding industries, conventional solvent-born coatings require longer curing period at low temperature season, which creates the needs for fast curing coatings to meet work schedule. In this study, several kinds of solvent free rapid cure epoxy coatings and polyurea coatings were evaluated in terms of feasibility for ship’s water ballast tanks (WBT).