Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
We have identified a class of inhibitory molecules that abrogate sulfidogenesis in oilfield produced fluids. Bottle tests and laboratory-scale bioreactors to mimic field conditions, found that very low doses of two versions of this class of compounds were found to effectively prevent H2S generation.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Microbiologically influenced corrosion (MIC) presents risk to operators and infrastructure in many industries. This work shows the continued potential of novel sulphidogenesis-inhibitory compounds and recent gains towards decreasing the impact of H2S production and on MIC.
Sulfate-reducing bacteria (SRB) constitute a specialized group of phylogenetically diverse anaerobes that are responsible for the dissimilatory reduction of sulfate to sulfide. They are present in a variety of environments, including oil- and gas-bearing formations, soils, and domestic, industrial, and mining wastewaters (1,2). SRB are a major concern in the oil and gas industry with significant economic and safety implication.