Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The objective of the present study was to evaluate the effect of alloying elements (Cr, Mo and Cu) on the corrosion behavior of low carbon steel in CO2 environments. Six samples were prepared with varying Cr content from 0 to 2 wt.% and with added 0.5 wt.% of Mo and Cu.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Hot dilute acidic pre-hydrolysis biorefining is a pre-treatment technology recently developed for converting raw biomass materials into sugar streams and other valuable intermediate chemicals at elevated temperatures. However, corrosion database of steels and alloys in hot dilute acidic solutions are very limited, resulting in the cost-effective selection of materials of construction difficult. Corrosion studies were thus performed to identify suitable alloys of construction and advance the understanding of how alloying elements (e.g., Cr and Mo) present in steels and alloys affect the formation and properties of surface oxides. In this paper, the corrosion performance of three alloys (UNS S31603, UNS S32101 and UNS N06625) in hot dilute sulfuric acids are introduced. The alloys exhibited active general corrosion and even pitting in the hot acidic solutions. Alloy 625 has better resistance to the hot dilute acid compared to SS 316L and duplex 2101. This may be attributed to the higher contents of Mo in the alloy. Long-term tests indicate that their corrosion rates are gradually increased with time. The introduction of 100 ppm Cl- from raw biomass feedstocks into the acid solution only has marginal effect on corrosion.
Alloys are often found to suffer much greater metal-dusting attack under high-pressure conditions compared to ambient-pressure conditions. Ultimately, the resistance of a given alloy to metal dusting depends on the formation of an oxide scale that is impermeable to carbon which, in turn, depends on scale composition and structure. This paper reports the metal-dusting behavior of several Ni-based alloys having relatively high Cr contents (about 30 wt.%) and different controlled minor levels of Fe, Al, and/or Si. Testing was conducted under 20 bar total pressure of a high-carbon-activity gas at 600 °C (1112 °F). The exposed alloys were analyzed by SEM and TEM techniques to evaluate the oxide scales and evidence of carbon ingress. It was found that aluminum is beneficial to improve metal dusting resistance by reacting to form a continuous inner layer of alumina; whereas iron is detrimental to resistance. Mechanistic aspects of the role(s) played by minor elements in affecting metal-dusting resistance are considered.
High-Temperature Hydrogen Attack (HTHA) is a phenomenon that involves the formation and accumulation of methane (CH4) in steels operating under conditions where there is hydrogen ingress. To account for the phenomenon, it is necessary to know how the supply of solute carbon atoms occurs. What is discussed here concerns only low-carbon steel within the range 0.08-0.30 wt % carbon that has no intended additions of alloying element such as chromium (Cr) or molybdenum (Mo), and that it is typically delivered in the as-hot worked or normalized condition, resulting in microstructure consisting of pearlite colonies within a matrix of ferrite grains. Carbon steels do not normally contain carbon atoms in solid solution, but most are tied to cementite (Fe3C), except when retained in supersaturated solid solution by rapidly cooling from just below the subcritical temperature Ac1, 727 °C (1340 °F), in which case, the solute carbon atoms do not remain in supersaturated solution for long, they precipitate, but the resulting precipitates are rather unstable and get quickly thermally activated when heated to temperatures that are considered relatively too low to significantly affect the cementite in existing pearlite colonies. Thus, these precipitates may supply solute carbon atoms for HTHA damage to occur at temperatures that would not otherwise occur if there were only cementite in existing pearlite colonies.