Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Corrosion monitoring technology selection should be based on the challenges and information needs in each individual case. A combination of monitoring technologies will often provide the most reliable information, leading to improved decisions and better corrosion management.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Assessing the corrosion degradation of aboveground tank bottom plates is a critical challenge for the industry. Internal inspections are a useful way of assessing the integrity of assets but might severely impact normal plant operation. In 2006, Chang et al. conducted a study on storage tank accidents and concluded that 74% of reported accidents occurred in petrochemical refineries, and 85% of them had caused fire and explosions.
Technologically advanced, fully-digital ultrasonic wall-thickness measurement systems coupled with Internet of Things (IoT) back-haul data communication schemes, including cellular, are enabling transportable,accurate and cost-effective corrosion-monitoring systems.
Over the past decades cost pressure in oil refining has increased, especially in Europe where the consumption of oil products is decreasing over time. Refineries are investigating ways to increase margin and, given that they account for around 80% of total refinery expenditure, reduction of crude oil cost is a key factor. One way of doing this is to purchase cheaper and generally less desirable crude from global markets.
The authors will demonstrate that deploying only a modest number of point measurement devices in an area of elevated localized corrosion risk will provide the best possible combination of probability of detection (POD) as well as ongoing wall thickness monitoring for localized corrosion attack.