Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We have developed a quantitative polymerase chain reaction (qPCR) assay to detect and quantify sulfur oxidizing bacteria (SOB) through the amplification of the soxB subunit of the thiosulfate-oxidizing gene complex. SOB populations have been linked to the corrosion of concrete and steel.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In previous years, we have explored the use of electrochemical sensors for humidity and corrosion measurements inside of natural gas pipelines. Designed to operate in systems where a conductive aqueous phase is intermittent or unavailable, these membrane-based sensors utilize electrochemical techniques such as linear polarization resistance and electrochemical impedance spectroscopy to determine the environment’s corrosivity to the pipeline material. We now aim to explore this sensor’s performance and capabilities in more complex systems, specifically in environments that promote localized corrosion. Using the aforementioned electrochemical techniques, along with electrochemical noise and cyclic voltammetry, we probe and monitor localized corrosion and general corrosion of X65 steel in the presence of inorganic pitting agents. Experiments are conducted in both aqueous and nonaqueous environments. The additional functionality increases the quantity and quality of corrosion data from these sensors, offering to internal corrosion-monitoring programs a more complete picture of real-time corrosion within their natural gas pipelines.
In this paper, several cases will be showcased to highlight the contributing causes and underlying mechanisms of corrosion damage of components that resulted in significant releases of hazardous substances onto operator’s property, rights-of-way, and the environment. The objectives of this paper are to understand the causes of the failures and their consequences, to identify the risk factors involved, to discuss mitigative measures after failure, and to observe trends that may indicate the need for additional preventative and mitigative actions. The over-riding goal is to provide details in areas for potential improvement in pipeline operations to reduce risk and improve integrity management.