Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
This paper explains the most common damage mechanisms of high temperature alloys in radiant section such as creep/carburization, thermal fatigue/carburization, and thermal shock.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Carbon dioxide capture, utilization, and storage (CCUS) is part of decarbonization solutions to reduce green-house gas emissions, as exemplified by the growing number of capital expenditure projects worldwide.1-2 In CCUS, the carbon dioxide (CO2) is consecutively (1) captured at origin, such as power plants and natural gas production sites, (2) separated from other gases and impurities, (3) compressed, (4) transported through pipelines, and finally (5) injected into a storage site such as deleted hydrocarbon wells, saline aquafers, coal beds, underground caverns, or seawater.1,3 Since the 1970s, specifically the first commercial carbon dioxide flooding in the United States (known as SACROC), carbon dioxide sequestration has been largely discussed in the context of enhanced oil recovery (EOR), not in the newer context of Sustainability. Nonetheless, substantial experience has been drawn from EOR, including for the selection of the right and economical materials.4 As reflected by the literature, past materials test programs have rarely given any attention to downhole jewelry alloys compared to tubulars or surface-infrastructure alloys, and consequently the track records for such bar-stock alloys are either inexistent or not readily available. 5-7 This lack of apparent return-on-experience represents a knowledge gap against the prospect of a safe greenhouse gas control method; needless to say, it also justifies the requirements for reliable well integrity monitoring solutions in carbon dioxide sequestration wells.8-9