Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Laboratory testing to qualify several materials for high strength fastener applications for two projects has shown that, in the presence of cathodic protection, nickel alloys 718 and 725 offer the best resistance to hydrogen embrittlement and are available in the strength/size required for high pressure and moderate temperature applications for sub-sea applications.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Alloys of Titanium were compared. Results of crevice corrosion, U-bend, and general corrosion tests in various different media are discussed in this paper. These tests were conducted in order to better understand how Grade 38 compares to common titanium alloys.
High-strength low-alloy steel bar stocks with 110ksi (758MPa) and 125ksi (862MPa) specified minimum yield strength (SMYS) are in demand for temporary and permanent downhole tools for sour service. NACE MR0175/ISO15156 currently allows the use of low-alloy steel bar stocks without any environmental restrictions up to 22HRC, which, by most specifications, corresponds to 80ksi (552MPa) SMYS. At higher SMYS, and with exclusions of API and proprietary sour tubular grades, NACE MR0175/ISO15156 does not address solid bar stocks, a gap and opportunity addressed by this investigation. Specifically, in this paper, the sulfide-stress cracking (SSC) of commercial UNS G41xxx (41xx) alloys, including 41xxMod (i.e., carefully selected or mill modified) is investigated following a series of NACE TM0177 Method A tests in either Solution B or A (NACE Region 3). Domain diagrams for 41xx alloys are disclosed, all demonstrating that 41xx solid bar stocks are SSC resistant above 150°F (66°C) when under a new and improved specification. When SMYS is raised to 125ksi (862MPa) with 34HRC max, a safe minimum temperature of 175°F (79.5°C) is confirmed for hollow bars, well in line with current NACE MR0175/ISO15156. The metallurgical and hardness requirements of 41xx alloys are also briefly discussed, along with opportunities for further modifications of 41xx bar stocks.
Typical austenitic stainless steels like 316L (S31603) contain chromium, nickel, and, optionally, molybdenum as major alloying elements. These are required to provide their beneficial properties, which include e.g. very high corrosion resistance and high ductility and toughness, yet showing comparably low strength and hardness. General corrosion resistance is primarily achieved by the element chromium, which causes formation of a thin but dense chromium oxide layer on the surface, when the amount of chromium dissolved in the metallic matrix is larger than approximately 10.5 wt%.
More and more High Pressure High Temperature (HPHT) sour wells are operated worldwide. Challenging material selection is required for such severe operating conditions.1,2 Very high strength materials, presenting yield strength above 896 MPa (130 ksi), are required for sustaining the pressure. Consequently, even a low amount of H2S in the gas phase may lead to a H2S partial pressure beyond the limit of 3.5 mbar (0.05 psi) established in NACE MR0175 / ISO 15156 standard.3 Indeed, both high yield strengths and partial pressures of H2S contribute to a situation where the risk of Sulfide Stress Cracking (SSC) is high. The present paper is focusing on the SSC resistance of 130 ksi minimum yield strength material developed for covering such HPHT applications.