Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We evaluated hydrogen embrittlement (HE) susceptibility of three high-strength alloys including a martensitic stainless steel, a high-strength carbon steel, and a duplex stainless steel. HE testing was according to the Incremental Step Loading Technique of ASTM F1624.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The paper summarizes the theoretical and test programs to validate the aluminum cladding solution – developed to overcome sulfide stress corrosion problems in high strength steel armors in H2S/CO2 containing environment.
High strength UNS S31010 with 140 ksi MYS has been produced by warm work hardening and cold work hardening. The characterization of high strength alloy with respect to corrosion resistance is discussed in this paper.
In this work, stress corrosion cracking (SCC) of X80 and X100 pipe steels under various cathodic protection (CP) levels in near-neutral pH environment was investigated. The results showed that X100 tended to form longer SCC cracks compared to X80 steel.
Flexible pipes are frequently used both as flowlines and risers in the oil and gas industry. A flexible pipe has a complex structure consisting of layers of polymer and metallic materials. The armor wire layers – shielded with polymer materials from seawater on the outside and well fluid on the inside – are the load and pressure bearing parts. Due to diffusion from the well fluid and/or damage of the outer polymer layer, the annulus can be water-filled, and armor wire can corrode. In this work, the susceptibility to hydrogen embrittlement (HE) with the presence of atomic hydrogen due to cathodic polarization has been investigated for six different tensile armor wire materials. Samples were exposed to Slow Strain Rate testing (SSRT) in 3.5% NaCl solution and cathodic polarization to -1.1 and -1.4 VAg/AgCl at room temperature. Reference samples without hydrogen charging were tested in air for comparison. Stress-strain curves, reduction in area (RA) and the microstructure of the fracture surfaces were investigated. The HE susceptibility tended to increase with the carbon content, strength and hardness and the materials tended to be more brittle when charged to -1.4 VAg/AgCl than -1.1VAg/AgCl.
For development of further high-strength low-alloy steel OCTG for sour service, effects of carbon content on the strength, microstructure, and sulfide stress cracking (SSC) resistance of low-alloy steel were fundamentally investigated.