Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper develops the relationships between proton reduction at the surface of metals, and hydrogen evolution or hydrogen diffusion into the metal.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper presents examples of anode array arrangements and corresponding attenuation characteristic calculations to enable optimization of current distribution. It also presents examples of return current imbalances and how they may be corrected.
This paper details a comprehensive AC interference analysis and implementation of an extensive AC corrosion mitigation and monitoring system for a 100-mile (328 kilometer) portion of a regulated pipeline.
This paper will focus on design parameters required for cathodic protection (CP) of stainless steel screens with particular attention on design and operational current density values and suitable protection criteria. The detrimental effects of overprotection will also be discussed.
A case history of a large diameter pipeline with fusion bonded epoxy coating that experienced AC corrosion within six (6) years while a similar 67-year-old pipeline with coal tar enamel coating experienced none.
For a buried pipeline under dynamic DC stray current interference, field experiments of corrosion coupons were carried out at two selected test stations by burying coupons of different bare areas at two different depths.
Case histories where throttling down the cathodic protection was evaluated to determine the impact on reducing the AC corrosion threat. Includes the use of fast-response electrical resistance corrosion rate probe monitoring technology.
Inline cathodic protection current mapping is a unique method of assessing a pipeline’s cathodic protection. This is accomplished by measuring the actual current received by the pipeline continuously along the entire pipeline length. Unlike pipe to soil potentials, which can have a great deal of error in them due to forces often beyond our control, the CP mapping tool uses the physical properties of the pipe itself to measure the CP current. The pipe is a very stable part of the circuit, unlike the soil surrounding it.
Corrosion risk due to AC interference has been known to be a possibility for decades but really came to the awareness of pipeline industry professionals starting around 2000 to 2004. Prior to that time there were some lab simulations as well as some suspected incidents in actual field situations, but many in the industry resisted accepting this as a real risk even as late as 2012 or later. Part of the reluctance to view AC interference as a genuine corrosion risk was that corrosion directly attributed to AC interference had not really been seen in the century of buried pipeline management, as well as a lack of understanding as to how this interference produced or accelerated corrosion on the pipeline.
The performance of titanium mixed metal oxide (MMO-Ti) anodes — provided by five global vendors — targeted for coke breeze backfilled soil impressed current cathodic protection (ICCP) applications, was investigated in this study. The time to failure of the MMO anodes was measured in accordance with NACE TM0-108. Accelerated lifetime testing was performed on MMO anodes to measure sample durability and to adequately meet the current density design requirement (0.06A/cm2). The anodes were immersed in 1M sulfuric acid under varying current densities (1A/cm2, 1.4A/cm2 and 2A/cm2) under controlled temperature, until the samples lost their electro-catalytic properties. The results measured at 1A/cm2 illustrated that time to failure of the tested anodes ranged from 10 days to more than 90 days. While conducting the same test at 1.4A/cm2, time to failure of MMO anodes was reduced to a range of 13 days to a little over 30 days yielding results of anode ranking consistent with those measured at 1A/cm2. Therefore, for the sake of time, the optimum applied accelerated current density was recommended to be 1.4 A/cm2 for Ru/Ta MMO anodes, to push them to their limits at a faster rate in a shorter time.
Corrosion of reinforcing steel is recognized as the major cause of the deterioration of reinforced concrete structures. Exposure to de-icing salts, seawater and chloride-containing set accelerators, plays a significant role in reinforcing steel corrosion (Figure 1). When the chloride content at the rebar level exceeds the threshold for initiation of corrosion, the passivation protective film on the rebar surface is destroyed and a corrosion cell can form either on the same piece of rebar with anodic and cathodic sites adjacent to each other, or a macro-cell between two different layers of reinforcement.
This paper discusses the design process and challenges in choosing what was at the time, the largest ever cathodic protection retrofit in terms of delivered current capacity offshore, and the actual current the structure required to maintain protection.