Save 20% on select best sellers with code MONSTER24 - Shop The Sale Now
This study is focused on description, discussion and analysis of the different technologies available against external corrosion in offshore export pipelines and its suitability for the Venezuelan pipeline offshore projects. Several anti-corrosive protective coatings and concrete weight coating were evaluated.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
As concrete buildings age the significance of them becomes more important as they are seen as historic icons and in some countries are protected by local laws. This puts a large demand on their service life requirements as they are expected to last indefinitely. The lifetime of these buildings is most commonly dictated by corrosion of the embedded reinforcing steel cause by carbonation. Challenges with carbonation comes down to dealing with the length of time before corrosion will be initiated and then how long it takes in the propagation phase before damage to the concrete occurs.The paper will look at various carbonation models used by practitioners which provide a level of prediction to future degradation and evaluate how effective these are in the real world. An emphasis will be on environmental conditions and how this impacts performance of the building. These environmental indexes are required on most structures if any level of accuracy is required. In addition to establishing parameters required by service life models inspection techniques will be reviewed for their applicability on understanding underlying corrosion conditions.
With over 7 decades of wide scale use of concrete reinforced pipe within infrastructure and water utilities in the United States the overall experience has generally been good. However intermittently problems can recur and drastically affect its performance. One such high profile and never the less recurring problem associated with concrete reinforced pipe has been discussed in this paper.In 2012 a rupture occurred on a 30-inch concrete reinforced water main pipe in the Northeastern United States. The 30-inch water main is a prestressed concrete cylinder pipe (PCCP). PCCP is a composite pipe material mainly composed of concrete (concrete core) steel cylinder (or steel liner) mortar/concrete coating and prestressed/high-tension wires wrapped around the steel cylinder which is outside of concrete core.Penspen Corporation Houston were contracted by the water main operator to carry out an independent diagnostic Root Cause Analysis (RCA) to determine the probable physical root cause(s) of the concrete reinforced pipe rupture and subsequent functional failure of the water pipe at the failure location and to identify the contributing failure factors.A detailed laboratory program for concrete and steel (wire and sleeve) specimens from both the immediate location of the rupture and locations away from the rupture for testing and comparison was recommended. The tests recommended included: visual inspection comprehensive metallurgical analysis of the material steel properties testing and concrete petrographic analysis.Laboratory test results revealed unusual anomalous corrosion pattern that occurred near the sleeve. The results indicated that the corrosion to the sleeve and wires at the rupture location occurred primarily to the outside surface of the sleeve/wire construct. That is only minor corrosion was noted on the inside surface of the sleeve even near the rupture location. This suggests that the thick outer mortar layer of the pressure pipe had been structurally compromised at some time during its life and ground water had permeated onto the steel sleeve and wire. The test results also showed that the chlorine level was as high as 4.1 weight percent on the corroded wires and 3.0 weight percent on the corroded sleeve. These levels are alarmingly high and far above the levels normally found in soils and therefore they support the fact that crevice corrosion attack occurred over a long time upon the outer surfaces of the sleeve and high strength wires.Following a deductive-inductive analysis the hypothesis “Soil with high dissolved salts (mainly Chlorides)” was identified as the most probable intermediate physical root cause based on evidence obtained and laboratory testing results for this RCA.This paper provides an overview adopted methodology analysis results interpretation for the different stages of this root cause analysis key findings with a discussion of the contributing failure factors and key recommendations to be considered with same service PCCP and external environment.
In this study, the extent of macrocell development between UPHC as are pair material for reinforced concrete marine bridges.
This presentation will discuss the four main emerging issues concerning water storage tank coating: Extending the Coating Season, Advancement in Surface Preparation, Online Project Bidding and Changes in AWWA Standards.
This standard provides a method for collecting reproducible potentiodynamic data, enabling the comparison of data across various experiments and laboratories. This method is intended for those with experience in potentiodynamic data collection across all of industry and academia. This method has been adapted from Appendix B of MIL-STD-889. Users interested in submitting data for acceptance into MIL-STD-889 shall refer to the latest version of MIL-STD-889
Testing and investigative procedures for evaluation of conventionally reinforced concrete structures. Focus on degradation from corrosion of reinforcing steel.