Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Over the past decade, there has been increasing interest in the corrosion behavior of carbon steels in supercritical CO2 conditions. Unlike the case of carbon capture and storage (CCS) where small amounts of water are present, the exploitation of fields with high pressures of CO2 needs to consider the presence of formation water, which presents strong corrosivity. It has been reported that the aqueous corrosion rate of carbon steel at high CO2 pressures (liquid and supercritical CO2) without protective FeCO3 corrosion product layers is very high (>20 mm/y) due to the high concentrations of corrosive species such as H+ and H2CO3.1-5 Steels with low Cr contents (i.e., 1% Cr and 3% Cr) have shown no beneficial effect in terms of reducing the corrosion rate to admissible values.6 Therefore, controlling corrosion in these cases usually involves the use of corrosion resistant alloys (CRAs) or corrosion inhibitors (CI). Adequate protection of carbon steel was achieved by applying CI in high pressure CO2 environments.6
The effect of H2S and corrosion inhibitor on the aqueous corrosion behavior of mild steel was evaluated at high CO2 partial pressure conditions. The experiments were performed in a 7.5 L autoclave with different temperatures (25°C and 80°C) and different H2S concentrations (1000 ppmv and 2000 ppmv) at 12 MPa CO2. The corrosion rate of steel samples was determined by electrochemical and weight loss measurements. The surface and cross-sectional morphology and the composition of the corrosion product layers were analyzed by using surface analytical techniques (SEM, EDS and XRD). Results showed that the presence of 1000 ppmv and 2000 ppmv H2S decreased the corrosion rate of mild steel compared with pure CO2 condition. However, the final corrosion rates were still higher than the targeted threshold (< 0.1 mm/y). Surface and cross-sectional analyses revealed the formation of FeS in the presence of H2S and no localized corrosion was observed. The addition of 400 ppmv of an imidazolinebased corrosion inhibitor reduced the corrosion rate below 0.1 mm/y in high pressure CO2 conditions with 2000 ppmv H2S.
Recommended corrosion inhibitor (CI) testing methods and interpretation to assure proper execution of a test program. Associated guidance for CI test program definition testing and management to ensure and improve the integrity of carbon steels applications in our Industry.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
TOL corrosion is reported to occur in large diameter wet gas pipeline in stratified flow conditionsdue to low fluid velocities1. With increasing distance from the inlet, the wet gas pipeline becomescooler as it loses heat to the environment. Such cooling causes water, hydrocarbon, and otherhigh vapor pressure species to condense on the pipe wall. The upper part of the pipe willconstantly be supplied with freshly condensed water while the less corrosive water saturatedwith corrosion products will be drained along the pipe wall to the bottom of the line.