Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Estimating corrosion growth rates for underground pipelines is a challenging problem. There are confounding variables with complex interaction effects that may result in unexpected outcomes. For instance, the relationship between soil conditions and AC interference is highly non-linear and challenging to model. This work expands upon prior work using a suite of machine learning tools to estimate corrosion rates. However, instead of estimating a single corrosion growth rate for a single girth weld address (GWA), this work estimates a distribution of potential corrosion growth rates. Modeling distributions provide a more effective risk-measurement framework, especially concerning high volatility or areas of severe tail risk.
This work relies heavily on machine learning and geospatial tools - particularly artificial neural networks and gradient boosted trees to estimate the corrosion rates and non-linear processes. Building upon prior work using data from a North American Operator, the models in this paper use additional variables from recent research in AC interference and microbiologically influenced corrosion to construct a higher accuracy and distribution-based model of pipeline corrosion risk.
Estimating corrosion growth rate for underground pipelines is a non-linear multivariate problem. There are many potential confounding variables such as soil parameters cathodic protection AC/DC interference seasonal / climate conditions and proximity to unique geographic features such as wetlands or polluted environments. The work presented provides an approach for estimating underground corrosion growth rates using a dataset of observations from a North American pipeline operator. Extensive geospatial data is utilized that has been obtained from public and private sources and extrapolated using Inverse distance weighted (IDW) interpolation. This work presents a model using IDW to estimate parameters involving soil interference geography and climate factors for any location in North America.Using this data this work then presents several different machine learning approaches including Generalized Linear Models eXtreme Boosted Trees and Neural Networks. All three provide an accurate estimation for corrosion growth rates for an underground asset at any latitude and longitude pair in North America. Each method comes with potential benefits and pitfalls specifically; trade-offs between model accuracy and transparency. This work presents a framework for comparing geo-spatial and machine learning estimates. Findings and a framework are provided for owners to assess how to think machine learning on their own assets.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
On an increasingly frequent basis, pipeline operators are using risk-based decision making to prioritize cross-company expenditures. Due to the long-term mitigation benefits of Cathodic Protection (CP), when planning external corrosion mitigation activities, pipeline operators typically prioritize mitigation of deeper anomalies for integrity expenditures due to their higher Probability of Failure (PoF). However, anomalies that are not receiving adequate CP or those experiencing electrical interference may remain unaddressed using this rationale. This paper presents both a qualitative and semi-quantitative approach to support the quantification of the risk reduction benefits gained from external corrosion prevention on pipelines. This can help in the efficient prioritization of both pro-active and re-active integrity repair activities. Supporting examples are also discussed to help explain the intended use of the methodology and the interpretation of the results.
One of the pillars of the fourth industrial revolution (4IR) is to let machines make decisions on behalf of humans; this paper describes new technology that allows machines to decide inspection programs and field validation and testing of results. The technology described is a part of integrity management, and uses data, statistics and expert decisions to design inspection programs. These inspection programs are an important part of the safeguarding of equipment to maintain production and safety.This technology is a data-driven predictive model of material loss from corrosion, based on domain expert input and historical data in the form of non-destructive testing (NDT) tests. The technology trends is based on historical data and SME input, while accounting for uncertainties in NDT measurements, with uncertainties in historical trends and uncertainties in future trends. This produces a more realistic failure prediction to enhance existing RBIs and adds safety by improving on early detection of trends in data. In total, this enables the machine to update inspection plans autonomously, reducing the number of inspections significantly.The paper also describes how the technology can be developed further to use production data and integrity operating windows to improve predictions, deal with localised corrosion and assess if the test points on a corrosion circuit are sufficient, can be reduced in number or should be manually evaluated by adding more test points.