Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

Estimating Corrosion Rate Risk Distributions using Machine Learning and Geospatial Analytics

Estimating corrosion growth rates for underground pipelines is a challenging problem. There are confounding variables with complex interaction effects that may result in unexpected outcomes. For instance, the relationship between soil conditions and AC interference is highly non-linear and challenging to model. This work expands upon prior work using a suite of machine learning tools to estimate corrosion rates. However, instead of estimating a single corrosion growth rate for a single girth weld address (GWA), this work estimates a distribution of potential corrosion growth rates. Modeling distributions provide a more effective risk-measurement framework, especially concerning high volatility or areas of severe tail risk. 

This work relies heavily on machine learning and geospatial tools - particularly artificial neural networks and gradient boosted trees to estimate the corrosion rates and non-linear processes. Building upon prior work using data from a North American Operator, the models in this paper use additional variables from recent research in AC interference and microbiologically influenced corrosion to construct a higher accuracy and distribution-based model of pipeline corrosion risk. 

Product Number: 51320-14640-SG
Author: Joseph Mazzella, Thomas Hayden, Haralampos Tsaprailis, Len Krissa
Publication Date: 2020
$0.00
$20.00
$20.00
Also Purchased
Picture for Estimating Corrosion Rates for Underground Pipelines: A Machine Learning Approach
Available for download

Estimating Corrosion Rates for Underground Pipelines: A Machine Learning Approach

Product Number: 51319-13456-SG
Author: Joseph Mazzella, Len Krissa, Thomas Hayden, Haralampos Tsaprailis
Publication Date: 2019
$20.00
Picture for IR 4.0 Integrity Management Using Data Analytics
Available for download

IR 4.0 Integrity Management Using Data Analytics

Product Number: MPWT19-15487
Author: Dr. Haaken Ahnfelt, Dr. Luis Caetano, Dr. Hilde Aas Nøst, Dr. Knut Nordanger, Reidar Kind, Dr. Zeeshan Lodhi, Dr. Lay Seong Teh
Publication Date: 2019
$0.00