Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
This paper focuses on short-term oxidation testing (1,000 hours) of Ni- and Fe based heat-resistant alloys in flowing air with varying cycle frequencies (1, 10, and 168 hours) at 982 °C. The alloys tested were ranked based on weight change behavior and metal recession measurements.
Operating conditions can have significant effect on the expected lifetime of components. The frequency of thermal cycling due to shutdowns or varying process parameters in particular has an effect on the oxidation behavior of heat-resistant alloys. Generating oxidation data under varying thermal cycle frequencies is then necessary to determine what alloys provide acceptable oxidation resistance in these environments. This paper focuses on short-term oxidation testing (1,000 hours) of Ni- and Fe based heat-resistant alloys in flowing air with varying cycle frequencies (1, 10, and 168 hours) at 982 °C. The alloys tested were ranked based on weight change behavior and metal recession measurements. It was found that increasing cycle frequency increased the rate constants in the parabolic region of the weight change curves in all of the alloys tested. Metal recession and internal oxidation increased with increasing cycle frequency, but this was found only in alloys that were already susceptible to accelerated oxidation at 982 °C.
Key words: downloadable, Cyclic Oxidation, Nickel Alloys
Hydrogen Induced Cracking (HIC) can be a major issue for line pipe exposed to sour environments. In this study, influence of the test solutions on HIC evaluation was investigated from the view point of corrosion. Electrochemical measurements were employed to compare corrosion behavior of line pipe steels between the 0.93N acetate buffer solution and the conventional 0.05N acetate solution.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Oxidation behavior of a commercial, cast Ni-base superalloy was studied in air-SO2 mixture, simulating combustion gases from high sulfur containing fuels. Experiments at 1050°C for up to 500 hours duration. The studied alloy was characterized with a number of analytical methods including SEM / EDX and GDOES after different oxidation times.
This paper presents an expanded laboratory test database on critical corrosion modes for UNS R55400 pipe exposed to relevant oilfield production environments which include sour well fluid brines, a heavy chloride/bromide brine well completion fluid, injected methanol, organic acid- and HCl-based well acidizing solutions, and seawater.