Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Before full decarburization can be achieved, the Intergovernmental Panel of Climate Change (IPCC) suggests an applicable way of combining CO2-producing processes with the carbon capture, utilization, and storage (CCUS) chain. Except for permanent CO2 storage, the economics and efficiency of CCUS processes can be further improved by utilizing the CO2 byproduct in other industry areas. One of the promising methods is to use the captured CO2 for enhanced oil recovery (EOR).
Carbon capture, utilization, and storage (CCUS) is a set of promising technologies developed to meet global sustainable energy production and climate control goals. Among them, the application of supercritical CO2 captured from various industrial emitters for assisting enhanced oil recovery (EOR) is seen as an economic and efficient pathway. Because of their low cost and acceptable mechanical properties, low alloy steels are the primary materials of construction in s-CO2 EOR systems although they are highly susceptible to corrosion in wet s-CO2 environments, especially with the presence of excessive H2O and other aggressive impurities. This paper studied the corrosion of 2Cr steel in s-CO2 saturated aqueous environments with different impurities. The simulated s-CO2 environment was held at 8 MPa and 50 °C for 96 hours with 0.6 M (3.5 wt.%) NaCl in solution; in subsequent tests, 0.05 M of NaBr or Na2S impurities were added to partially replace NaCl to clarify the effects of other anions. Corrosion rates were determined using weight loss measurements. It was found that 2Cr steel showed the highest corrosion rate of about 2.0 mm/y in the Br-containing environment while its best performance occurred in the S-containing environment (around 1.4 mm/y). FeCO3 and chromium oxides were likely the main corrosion products formed in all environments. FeS and potentially Fe2S3 were also detected in the S-containing environment. The effects of Cl-, Br- and S2- on the corrosion behavior of 2Cr steel in the s-CO2 saturated aqueous environments were discussed.
Carbon capture, utilization and storage (CCUS) is one of the key technologies to achieve the net-zero emission. One of the CCUS method is CO2 injection to depleted oil and gas wells or aquifers and storage (CCS). The CO2 emitted from fossil fuel-based powers and industrial plants are captured and transported to the injection point by ships or pipe line. Following that, the dense phase or supercritical phase CO2 will be injected to depleted oil and gas wells or aquifers through oil country tubular goods, for examples, seamless pipe.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Pre-salt carbonate reservoirs in the Santos Basin are a challenge for offshore well design andconstruction. Located under a salt layer of around 2000 m, they generate large amounts of carbon dioxide associated with oil and gas production. To avoid releasing millions of cubic meters of CO2 into the atmosphere, the gas is reinjected or used for artificial lift purposes, where its fraction can reach up to 80% of the total composition.