Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Pitting corrosion of these steels in a high-temperature, high-CO2, low-H2S, and high-Cl- environment was investigated by scanning electron microscope (SEM), energy dispersive detector (EDS) and X-ray diffraction (XRD).
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A study investigated corrosion at the cement/casing interface for 13Cr casing steel. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) found that corrosion increased with increasing temperature.
In this paper, the scaling mode at the early stage of carbon steel exposed to H2S environments with short exposure time were investigated. Corrosion exposure tests and linear polarization resistance (LPR) techniques were performed.
A multicomponent High Entropy Alloy (HEA) CoCrFeNiMo processed with vacuum arc remelting procedure was tested for corrosion in geothermal environment in the Reykjanes Geothermal Power Plant in Iceland.
In pipeline corrosion management practice, one challenge is how to locate the most corrosive area along the right-of-way of an existing pipeline. Pipeline networks are complex systems containing different grades of multiphase crude oil coming from dissimilar reservoirs, which results in fluids having dissimilar chemical and physical properties along each network. The fluid starts flowing into a pipeline at a certain pressure, temperature, and associated velocity.
H2S corrosion, also known as sour corrosion, is a very serious type of metal degradation in oil and gas transmission pipelines. When H2S is present in an operating pipeline, localized corrosion is the type of attack which contributes to the most failures in oilfields, consequently, its impact on the economics of oil and gas production is indisputable. Therefore, mitigation of this type of corrosion could prevent such failures and significantly enhance asset integrity while reducing maintenance costs as well as eliminating environmental damage.
Hydrocarbons still remain as a fundamental contributor towards meeting the worldwide demand for energy, despite the growth of other alternative sources such as renewable and nuclear options. Due to low cost and availability, carbon steel, remains as the most commonly used material for pipelines in down and upstream activities within the oil and gas industry. However, carbon steel is not an exceptional metal alloy from the perspective of internal corrosion resistance. The economical cost for its degradation and related failures represent 10% to 30% of the maintenance budget in petroleum industry. It is therefore crucial that the corrosion of such a susceptible steel is managed and controlled accordingly.
A multicomponent High Entropy Alloy (HEA) AlCrFeNiMn processed with vacuum arc remelting procedure was tested for corrosion in geothermal environment in the Reykjanes Geothermal Power Plant in Iceland.