Search
Filters
Close

Search and Filter

Toggle Open/Closed
View as
Display per page
11781 total products found.
Picture for 51318-11398- Modeling of Microbiologically Influenced Corrosion (MIC) in the Oil and Gas Industry - Past, Present and Future
Available for download

51318-11398- Modeling of Microbiologically Influenced Corrosion (MIC) in the Oil and Gas Industry - Past, Present and Future

Product Number: 51318-11398-SG
Author: John Wolodko / Tesfaalem Haile / Faisal Khan / Christopher Taylor / Richard Eckert / Seyed Javad Hashemi / Andrea Marciales Ramirez / Torben Lund Skovhus
Publication Date: 2018
$20.00
Picture for Identification And Characterization Of Planktonic And Sessile Consortium Associated With Microbiologically Influenced Corrosion (MIC) In The Oil And Gas Industry
Available for download

Identification And Characterization Of Planktonic And Sessile Consortium Associated With Microbiologically Influenced Corrosion (MIC) In The Oil And Gas Industry

Product Number: 51321-16544-SG
Author: Soler Arango J./ Saavedra A.U./ Pagliaricci M.C./ Fernández F.A./ Morris W./ Vargas
Publication Date: 2021
$20.00
Picture for Microbiologically Influenced Corrosion by General Aerobic and Anaerobic Bacteria in Oil & Gas Separators
Available for download

Microbiologically Influenced Corrosion by General Aerobic and Anaerobic Bacteria in Oil & Gas Separators

Product Number: 51320-14365-SG
Author: Amer Jarragh, Saleh Al-Sulaiman, Yousef Khuraibut, Hasan Bu Taleb, Dr. Ali Moosavi
Publication Date: 2020
$20.00

By far, the microbiological species most associated with corrosion has been Sulphate-Reducing Bacteria (SRB).  Majority of Microbiologically Influenced Corrosion (MIC) research has focused on the activities of this type of bacteria. One of the primary reasons for this has been the presence of iron sulfides in corrosion products associated with MIC. SRB reduce sulfates to sulfides, which then react with iron and steel. However, an accepted fact is that MIC is also caused by the action of the biofilm produced by bacteria, in a similar way to under-deposit corrosion. 

The primary method used to prevent MIC in the oil and gas industry is by use of biocides. The criteria used for selection of biocides is often their proficiency to kill SRB. The danger with this is that one can neglect the ability of other bacteria frequently found in oil and gas environment, such as general aerobes and general anaerobes to cause corrosion by biofilm production. This became evident when severe general & pitting corrosion was observed in two oil and gas separators in one of the facilities in Kuwait Oil Company (KOC), where SRB levels were zero but significant numbers of sessile and planktonic general aerobes and general anaerobes were found to be present in the process. 

Using microbiological and chemical analysis, the mechanism of this type of MIC, specially the relationship between the quantity of various biofilm-forming bacteria and nature and magnitude of corrosion has been studied and the findings are presented in this paper. 

Corrosion and Asset Integrity Management for Upstream Installations in the Oil and Gas Industry

Product Number: 38629
ISBN: 9781535261524
Author: Carlos Alberto Palacios
$170.00
Picture for Continuous Application Corrosion Inhibitors to Mitigate TOL Problems in Upstream Oil & Gas Industry
Available for download

51313-02596-Continuous Application Corrosion Inhibitors to Mitigate TOL Problems in Upstream Oil & Gas Industry

Product Number: 51313-02596-SG
ISBN: 02596 2013 CP
Author: Vijaya Narasaiah
Publication Date: 2013
$20.00