Search
Filters
Close

Search and Filter

Toggle Open/Closed
View as
Display per page
14122 total products found.
Picture for Field Application of Corrosion Resistant Weld Overlay in Ultra-Supercritical Coal-Fired Boiler Waterwalls
Available for download

Field Application of Corrosion Resistant Weld Overlay in Ultra-Supercritical Coal-Fired Boiler Waterwalls

Product Number: 51320-14660-SG
Author: Jun Jiang, Bingtao Li
Publication Date: 2020
$20.00

Weld overlay has been successfully used to mitigate high temperature corrosion issues in coal-fired boilers since the1990s, such as in waterwall and superheater/reheater area. Weld overlay is typically applied in shop or field by using Gas Metal Arc Welding (GMAW) process for boiler waterwall application, and the overlay welding is performed in vertical down welding mode (3G welding position) in subcritical and supercritical boiler waterwall applications. With the rapid development of coal-fired boiler market in China, ultra-supercritical boilers are becoming the dominated boiler type which often has spiral waterwall design. Most of ultra-supercritical coal-fired boiler waterwall consists of CrMo steel tubes, which could suffer severe high temperature corrosion attack after the installation of low NOx burners. It is expected that weld overlay could provide a long-term high temperature corrosion protection for ultra-supercritical boiler waterwall based on previous weld overlay study and application experience. However, for the spiral waterwall with inclined tube design, its field overlay welding is highly challenging and significantly different from typical vertical boiler waterwall overlay welding. The challenge and difference include welding position, welding sequence, welding parameters, and overlay properties, etc. This paper presents a successful field application of 309L stainless steel and 622 Ni-based alloy weld overlay on the spiral waterwall of an ultra-supercritical coal-fired boiler, including the welding development, simulation, and experience of overlay welding on the inclined tubes, along with the characterization of the weld overlay applied. 

Picture for SP21412-2020/SSPC-CPC 1 Corrosion Prevention and Control Planning
Available for download

SSPC CPC-1/NACE SP21412-2020, Corrosion Prevention and Control Planning

Product Number: SP21412-2020
Publication Date: 2020
$109.00
	Picture for Influence of Pb and Cl in Waste Wood Fuel on Furnace Wall Corrosion of Low Alloyed Steel and Alloy 625
Available for download

Influence of Pb and Cl in Waste Wood Fuel on Furnace Wall Corrosion of Low Alloyed Steel and Alloy 625

Product Number: 51324-21033-SG
Author: Annika Talus; Rikard Norling; Alice Moya Núñez
Publication Date: 2024
$40.00
Picture for Evaluation of Corrosion Inhibitor Gel Filler Retention in Shorted Casings: A Pressure Test Study
Available for download

Evaluation of Corrosion Inhibitor Gel Filler Retention in Shorted Casings: A Pressure Test Study

Product Number: 51324-21135-SG
Author: Juan Dominguez Olivo; Alexander Roytman; Mikhail Ivanov; Terry Natale; Yefim Vaks
Publication Date: 2024
$40.00
Picture for Stress-Assisted Corrosion Of A Superheater Tube: The Role Of Thermal Fatigue Cracking And Crevice Corrosion In The Failure Mechanism
Available for download

Stress-Assisted Corrosion Of A Superheater Tube: The Role Of Thermal Fatigue Cracking And Crevice Corrosion In The Failure Mechanism

Product Number: 51321-16530-SG
Author: Ewa Labuda/ W.B.A. (Sandy) Sharp
Publication Date: 2021
$20.00
Picture for 01052 CORROSION INHIBITION AND DRAG REDUCTION
Available for download

01052 CORROSION INHIBITION AND DRAG REDUCTION IN MULTIPHASE FLOW

Product Number: 51300-01052-SG
ISBN: 01052 2001 CP
Author: V. Jovancicevic, S. Ramachandran, Y.S. Ahn, B. A. M. Oude Alink
$20.00
Picture for 98294 THE ROLE OF BIOMINERALIZATION IN
Available for download

98294 THE ROLE OF BIOMINERALIZATION IN MICROBIOLOGICALLY INFLUENCED CORROSION

Product Number: 51300-98294-SG
ISBN: 98294 1998 CP
Author: Brenda J. Little, Patricia A. Wagner, Zbigniew Lewandowski
$20.00
Picture for Fe3O4, FeCO3 or FeS - Which Corrosion Product Will Prevail at High Temperature in CO2/H2S Environments?
Available for download

Fe3O4, FeCO3 or FeS - Which Corrosion Product Will Prevail at High Temperature in CO2/H2S Environments?

Product Number: 51320-14413-SG
Author: Shujun Gao, Bruce Brown, David Young, Srdjan Nesic, Marc Singer
Publication Date: 2020
$20.00
Picture for Optimization of Internal Corrosion Assessments in Crude Oil Pipelines with Internal Corrosion Predictive Model
Available for download

Optimization of Internal Corrosion Assessments in Crude Oil Pipelines with Internal Corrosion Predictive Model

Product Number: 51321-16180-SG
Author: C. Onuoha/ E. Pozniak/ S. McDonnell/ V. Shankar/ L. de Guzman/H. Li.
Publication Date: 2021
$20.00
Picture for Effect Of Dissolved Oxygen On Carbon Steel Corrosion And Particulate Formation In Water Injection Systems. Part 2: Rotating Cage Experiments
Available for download

Effect Of Dissolved Oxygen On Carbon Steel Corrosion And Particulate Formation In Water Injection Systems. Part 2: Rotating Cage Experiments

Product Number: 51324-20817-SG
Author: Jose Vera; Ken Evans; Conchita Mendez
Publication Date: 2024
$40.00
Seawater treatment for secondary recovery injection typically includes controlling the dissolved oxygen concentration (DOC) below 20 ppb using a combination of mechanical deaeration and oxygen scavenger injection. However, upsets can occur during operation, which may temporarily increase DOC above the specified values. These DOC excursions may not only significantly increase corrosion rates but also produce corrosion product particles in suspension. The potential influence of suspended particles produced by corrosion in water injection systems’ performance during water injection operations is not well understood. An electrochemically modified rotating cage autoclave (RCA) setup was used in conjunction with a particle analyzer instrument to correlate dissolved oxygen concentration (DOC), corrosion rates and particulate formation in real-time. Dissolved oxygen and pH were also continuously monitored throughout the tests. All testing was performed in a seawater simulant brine at 32°C. The effect of consecutive DOC excursions from 20 ppb to either 100 ppb or 1000 ppb were evaluated at two different flow velocities. The key findings from the testing can be summarized as follows: (1) there is a clear and significant interaction between flow velocity and the corrosion rates caused by the DOC excursions, which is not considered in the available predictive models; (2) localized corrosion was observed mainly on tests with 1000 ppb excursions; (3) The suspended particle concentration starts to increase after the total accumulated iron produced by corrosion reaches a minimum value, usually shortly after the first DOC excursion, and the mean particle size increases, reaching a maximum between 20 and 50 µm.