Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Shown on Figure 1 is a typical impressed current CP diagram. When the rectifier is first turned on, i.e. time t=0, there is no polarization yet. At that moment, the applied DC voltage is fully consumed by IR drops at anode (IRa0) and cathode (IRc0), plus original potential difference between anode and pipe (Eoca- Eocc). When t=0, the current is at the greatest value. Over time when polarization kicks in, due to adding polarization resistance, the current is gradually reduced.
A recent review provided an overview of current microbiologically influenced corrosion (MIC) research. It established that despite extensive study and numerous publications, fundamental questions relating to MIC remain unanswered and stress the lack of information associated with MIC recognition, prediction, and mitigation (Little et al., 2020). On the other hand, bibliometric analysis on the MIC of engineering systems conducted a knowledge gap analysis to focus research efforts and to develop a roadmap for MIC research (Hashemi et al., 2018).
Given the need to end our dependence on fossil fuels and invest in alternative sources of energy that are clean, accessible, affordable, sustainable, and reliable, geothermal energy can be a promising choice as a prominent source of energy. Geothermal energy systems are an established renewable energy resource with a long history of adaptable, reliable baseload generation. Conventional geothermal energy systems (GES) in the Western USA can provide almost 30 gigawatt electricity (GWe) of baseload.
The primary objective of pipeline integrity management (PIM) is to maintain pipelines in a fit-for-service condition while extending their remaining life in the safe, most reliable and cost effective manner. The effective and successful life cycle pipeline integrity management is based on following aspects: (a) feasibility, (b) design, (c) procurement, (d) fabrication, (e) modification, (f) transportation and storage, (g) pre-commissioning and commissioning, (h) handover, (i) operation and maintenance, (j) suspension/abandonment. The requirements and recommendations of the management of integrity of a pipeline throughout its life cycle are given in the documents published by ISO organization.
Mono-ethylene glycol (MEG) is often injected in offshore gas transport lines to prevent the formation of gas hydrates (crystalline solids comprised of water and gas that form at low temperatures). Glycol is one of the most effective products for this purpose and acts to further lower the temperature at which hydrates would normally form. As such, it is called a thermodynamic inhibitor.
Oil and gas buried pipelines are protected against corrosion by both organic coatings, a passive protection system, and cathodic protection, an active protection system. When coating defects occur, CP controls the corrosion of the exposed steel surface. From an operating point of view, cathodic protection interruptions can occur on the network during interventions, consignments, or technical problems. Literature indicates that during CP interruption the corrosion rate of the metal remains lower than its free corrosion rate. Application of CP confers a remanence of protection to the metal. The objective of this study is to determine the safe duration for cathodic protection interruptions depending on environmental and cathodic protection conditions.
Protective coatings provide the primary defense against corrosion of pipelines. Adhesion is one of the most crucial properties for coatings to function properly and support successful long-term integrity. If the bond between the coating and substrate is weak or deteriorates, the coating ceases to be attached to the substrate, and the coating loses its effectiveness and eventually fails.
Recently, Countries around the world are taking steps to reduce carbon, which is considered a major cause of environmental pollution and the hydrogen market, an eco-friendly energy, is growing rapidly. Major countries such as the United States, Japan and the European Union (EU) are strengthening policies for the use of hydrogen energy and hydrogen-related projects in various fields, from materials to chemistry, energy and mobility, are being actively carried out. In order to use hydrogen energy, it is the most efficient and currently the most reasonable method to transport the produced hydrogen as high-pressure gas through a pipeline.
Coatings have been used as a primary method to protect the substrate underneath from corrosion in various geographical environments. A diverse range of generic coating types are available to protect the metals in different corrosive environments. Selection of the right coating for a specific metallic substrate at given operating conditions and environment is key to avoiding any premature failures of coating.
HFW pipes is considered a cost-effective pipe option for oil and gas pipeline projects. The HFW seam performance is always a concern, especially in challenging environments such as low temperature applications and wet sour services. One of the challenges include the seam properties to resist sulfide stress cracking (SSC) or hydrogen embrittlement (HE) when exposed to hydrogen charging environment such as a wet sour service.
Precipitation hardened (PH) nickel alloys have been broadly used in various applications in the oil and gas industry thanks to its high strengths and outstanding corrosion resistance in several aggressive environments. Alloy 718 (UNS1 N07718), Alloy 925 (UNS N09925), Alloy K-500 (UNS N05500), Alloy 725 (UNS N07725), and others are among the most used PH nickel alloys in the oil and gas industry. Despite of their known high corrosion properties, hydrogen embrittlement is one common failure reported by the industry for this class of alloys.